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1. Introduction

From a purely computational point of view, one of the aims of this paper is to show that

the exact beta function of large-N QCD4, for the ’t Hooft canonical coupling g2
c = g2

cYMN

that occurs in the effective action, Γq, constructed in this paper, is given by:

∂gc

∂logΛ
=

−β0g
3
c + βJ

4 g3
c

∂logZ
∂logΛ

1 − βJg2
c

(1.1)

in a certain regularization scheme to be specified later, with:

β0 =
1

(4π)2
11

3

βJ =
4

(4π)2
(1.2)

and Z to be defined in eq. (3.16) and computed to all orders in the Wilsonean coupling

constant, up to finite terms, in eq. (3.17) of section 3.

At the same time, the beta function for the ’t Hooft Wilsonean coupling, that occurs

in Γq, is exactly one loop:

∂gW

∂logΛ
= −β0g

3
W (1.3)

While the mentioned scheme is not easy to compare to anyone which may be chosen in

perturbation theory, perhaps the most relevant aspect of eq. (1.1) is that it is deduced

from a version of the large-N loop equation for planar self-avoiding loops and that, once

the result for Z to the lowest order in the canonical coupling:

Z = 1 + g2
c

1

(4π)2
10

3
log

(

Λ

µ

)

(1.4)
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is inserted in eq. (1.1), it implies the correct value of the first and second perturbative

coefficients of the beta function [1 – 4]:

∂gc

∂logΛ
= −β0g

3
c +

(

βJ

4

1

(4π)2
10

3
− β0βJ

)

g5
c + · · ·

= − 1

(4π)2
11

3
g3
c +

1

(4π)4

(

10

3
− 44

3

)

g5
c + · · ·

= − 1

(4π)2
11

3
g3
c − 1

(4π)4
34

3
g5
c + · · · (1.5)

which are known to be universal, i.e. scheme independent.

In a different large-N limit of QCD4, a different exact beta function of NSV Z type

was obtained in [5, 6], by finding a link with the large-N N = 1 SUSY gauge theory. It

was then argued [5, 6] that also the ordinary large-N ’t Hooft limit considered in this paper

admits SUSY relics and in particular a beta function of NSV Z type. It is possible that

the preceding observation explains why the exact beta function found in this paper has a

NSV Z structure, despite the absence of any super-symmetry. In this respect, but more

intrinsically from the point of view of this paper, it might be relevant the existence, in

the pure large-N YM theory, of an analogue of the chiral ring of the N = 1 SUSY gauge

theory, mentioned later in this introduction.

The exact beta function of eq. (1.1) follows from our construction of the holographic

effective action, Γq, which is in fact the aim of this paper from a broader point of view.

Before showing the details, we should perhaps mention in which sense our construction

solves the loop equation in the large-N limit. Usually, by the solution of the large-N limit

it is meant finding an operator valued connection Aα, the master field [7], living in some

non-commutative type II1 von Neumann algebra (i.e. the algebra has a finite normalised

trace) [8], that solves the following loop equation [9, 10] uniformly for all loops:

0 =

∫

DAα exp

(

− N

2g2

∑

α6=β

∫

Tr(F 2
αβ)d4x

)(

Tr

(

N

g2
DαFαβ(z)Ψ(x, x;A)

)

+ i

∫

C(x,x)
dyβδ(d)(z − y)Tr(Ψ(x, y;A))Tr(Ψ(y, x;A))

)

(1.6)

with:

Ψ(x, y;A) = P exp i

∫

C(x,y)

Aαdxα (1.7)

This is a very difficult problem, since the ambient algebra of based Wilson loops in the

large-N limit is a non-hyperfinite von Neumann algebra, i.e. an algebra that is not the

limit of a sequence of finite dimensional matrix algebras [11 – 15].

By no means our construction solves this problem, that is essentially equivalent to find

the exact 1PI effective action in the large-N limit [16 – 18]. Rather, we consider solving the

loop equation for a fixed planar self-avoiding loop. Since the loop is fixed, the corresponding

algebra, obtained iterating the loop, is commutative [11, 19]. In addition the connection,

whose holonomy is computed by our choice of the Wilson loop, is of a special type. Its
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curvature is a linear combination of the anti-selfdual (ASD) components only. In a sense

that will become apparent in the rest of the paper, our Wilson loop belongs to an N = 0

analogue of the chiral ring [20, 21] of N = 1 super-symmetric gauge theories [22]. Thus

we are looking for the solution of a much simpler, yet non-trivial problem, that contains a

more limited, but still very interesting information.

The version of the large-N loop equation that we refer to, has been named holographic

by us in [11], because it involves a boundary-bulk correspondence between the loop equation

of large-N QCD4, which lives on loops, and a holographic effective action whose critical

equation, which lives on points, implies the loop equation in its holographic form. We

should justify better why we named holographic such construction.

The loop equation can be roughly seen as the sum of a classical term, that is the

easy one to control, because it has already the form of a critical equation for an effective

action (the classical one indeed) and a quantum term, the difficult one to control, because

it is a contour integral along the loop and thus gives the loop equation a structure very

different from a critical equation defined on points. Now, loosely speaking, there is a way

to associate to a loop a point, via the evaluation of a residue. In fact the Cauchy theorem

can be regarded as the oldest and most remarkable case of holography.

We implement this idea as follows. Our strategy, to construct the quantum effective

action equivalent to the loop equation, is to change variables and to make transformations

in the loop equation in such a way that, in the new variables, the quantum term vanishes

for planar self-avoiding loops whose holonomy is of the special type mentioned before. This

is achieved in two steps.

In the first step, we change variables in the loop equation from the connection to its

curvature, in such a way that the quantum term, that is a contour integral, is reduced to

the computation of a regularized residue, evaluated at any marked point of the loop that

enters the loop equation. The reason for which this is possible for our special choice of

the connection is that a holomorphic gauge exists, in which functionally differentiating the

connection with respect to its curvature in the loop equation produces the Cauchy kernel.

In the second step, the region inside and the one outside the marked loop are mapped

by a conformal transformation to two cuspidal fundamental domains (we get control over

the cusp anomaly) in the upper half plane, in such a way that to any marked point of the

loop are attached infinitesimal strips ending into the cusps at infinity. Attaching to the

marked points the infinitesimal strips does not change the Wilson loop, i.e. the holonomy of

the loop, because of the zig-zag symmetry. The zig-zag symmetry means that the Wilson

loop is left invariant if any arc that backtracks is added to the loop [23]. The regularized

residue vanishes at the cusps (i.e the image of the marked points by the conformal map)

because of the zig-zag symmetry of the loop in a neighbourhood of the cusps, thus implying

the existence of an equivalent effective action on the conformally transformed domain.

The two domains thus obtained have the loop in common. We can look at this picture

as a hologram of the universe. This hologram of the universe is in fact enriched by many

other cusps, that can all be chosen to lie on the boundary of the upper half plane. These

cusps are the images in the hologram of a lattice of points in the (conformally compactified)

plane over which the loop lies, that carry the local degrees of freedom of the gauge theory.

– 3 –
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Also these cusps are the end points of infinitesimal strips, starting from the loop, that

can be freely added to the loop without changing the loop equation because of the zig-zag

symmetry. Thus, in our hologram, all the bulk degrees of freedom of the original theory

live on the boundary line in the upper half plane.

It has been shown in [11] that, from a purely gauge theoretic point of view, the reason

for which the quantum term in the loop equation vanishes on the hologram is that on the

hologram the structure group of the gauge theory can be reduced by means of a peculiar

gauge fixing: we can, at the same time, choose an axial gauge in a direction orthogonal to

the line of the cusps and, using the residual gauge symmetry extended across the cusp line,

diagonalize the degrees of freedom that live at the cusps, to get a theory of N eigenvalues

as opposed to the original order of N2 matrix elements. This theory of N eigenvalues is

necessarily classical in the large-N limit and it is determined by the critical equation of the

effective action, thus completing our, by now holographic, boundary-bulk correspondence.

Therefore holography, for us, is a tool to perform large-N functional integrals. From

this purely gauge theoretic point of view, a subtle point arises about compactifying the

cusps on the conformally transformed domain. This compactification is absolutely needed:

the loop equation would reduce simply to the classical contribution, were the marked points

not to belong to the loop. Because of the compactification, the gauge symmetry must

extend to the cusps. However, extending the gauge freedom to the cusps creates in general

a Dirac string and it is not compatible with the geometry of the cusps as parabolic points.

In fact the arcs ending into the cusps associated to the usual parabolic points share the

same orientation in order to form tubes, after pairwise identification, ending into the cusps

at infinity. The Dirac string forbids the identification of the two arcs and thus the extension

of the gauge symmetry to the cusps, as it should be for truly parabolic points. Indeed the

moduli of parabolic bundles are usually defined requiring that the gauge group acts trivially

at the cusps [24]. Yet, if the arcs ending into the cusps have opposite orientation, as implied

by the loop orientation, the existence of the Dirac string is compatible with the opposite

orientation of the arcs, because these arcs must not be identified: indeed they form strips

and not tubes. Thus, in this case, the gauge symmetry can be extended to the cusps.

In this paper we choose a Wilson loop in the adjoint representation, that in the large-N

limit factorizes into the product of two Wilson loops in the fundamental representation and

its conjugate. Since the v.e.v. of a Wilson loop does not depend on its orientation and on

which between the fundamental representation or its conjugate is chosen, at global level

there are two possibilities of gluing the two charts of the hologram along the boundary

loop. They correspond to an orbifold or to an orientifold [25, 26].

In d = 4, we present our construction for the orientifold case only [26]. The essential

reason is that any marked point of the loop has in fact two images, one for each of the

two hologram charts. Therefore the infinitesimal strips added to the loop must occur in

pairs, one inside and one outside the loop. Thus also the cusps occur in pairs, so that

the lattice inside and the one outside the loop have the same number of cusps. Hence the

theory needs necessarily two different lattice scales, ã and a, that are used to measure, for

example, different areas, since the number of lattice points in the two charts is the same.

Thus space-time does not contain a lattice of uniform spacing. This is somehow irrelevant in
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the d = 2 theory, but introduces great computational difficulties in d = 4. These difficulties

persist in the orbifold construction. The orientifold construction, instead, merges hologram

charts with the same lattice spacing, but with conjugate representations of the connection,

allowing explicit computations.

Let us describe in more detail the holographic loop equation [11]. The loop equation

in its conventional form is written in terms of a generic non-planar Wilson loop. However,

to be able to evaluate the quantum term as a residue, we need a planar Wilson loop.

Planar unitary holonomies are not a complete system of observables in the d = 4 theory.

To partially fix this, we consider planar non-unitary Wilson loops, built by means of a

non-hermitean connection whose curvature is a certain linear combination of the ASD

part of the curvature only. Correspondingly, to get our new form of the loop equation,

we introduce a resolution of identity in the functional integral into the levels of the ASD

part of the curvature. To be compatible with this resolution, we employ the well known

decomposition of the classical action into a topological term, the second Chern class, and

a term containing only the ASD part of the curvature. Our loop equation is written using

as integration variable the ASD part of the curvature.

The second Chern class does not contribute to the loop equation. Yet, to get a planar

theory in space-time and thus a residue in the loop equation, we need a non-commutative

(in a plane orthogonal to the plane of the Wilson loop) Eguchi-Kawai (EK) reduction of

the theory from four to two dimensions, in the limit of infinite non-commutativity, that is

equivalent to the original theory in the large-N limit [27 – 31].

This reduces the ASD part of the curvature to a curvature of Hitchin type [32], but

some of the global four dimensional information survives in the second Chern class and

in the existence of a central extension in the ASD part of the curvature due to non-

commutativity, that is related to the first Chern class.

We then require the local part of the curvature of Hitchin type to be localised into

a linear combination of two dimensional delta functions. This realizes many purposes. It

gives us a dense basis valued in the distributions, for integrating over the curvature in the

functional integral. It gives us a nice moduli space [33 – 37]. It gives us a curvature localised

on points, to which we can attach infinitesimal strips in the loop equation. It gives us nice

formulae for the first and second Chern class in terms of parabolic Higgs bundles [36, 24].

These Chern classes depend also on four dimensional features of the fibration of the

parabolic Higgs bundles, for example intersection numbers. This four dimensional infor-

mation is given independently of the loop equation and it is represented by a discrete set

of choices some of which must be compatible with the global structure of the hologram.

The content of this paper is as follows.

In section 2 we explicitly construct the quantum holographic effective action, Γq, an

object that was previously defined in [11] through an auxiliary quantity, Γ, the classical

holographic effective action. In fact for technical reasons, to construct the large-N limit, we

employ a twisted version of the pure YM theory, that is equivalent to a non-commutative

theory on R2 × R2
θ in the limit of infinite non-commutativity θ → ∞. Section 2 contains

several refinements with respect to [11]. In particular it employs a well known decomposi-

tion of the classical YM action into the second Chern class and a purely ASD term, that is

– 5 –
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particularly well suited both theoretically and computationally for getting our holographic

effective action, but that was not considered in [11]. We give also a uniform treatment of

the cusps corresponding to the marked points of the loop and the ones corresponding to

the remaining points, an improvement with respect to [11]. We also mention the absence of

a logarithmic cusp anomaly in the loop equation in d = 4. Finally, we point out some un-

expected links with the operad structure of the arc complex defined over Riemann surfaces

with boundaries [38].

In section 3 we write down the holographic effective action in d = 2 (d = 4), taking

into account in our hologram both regions delimited by the Wilson loop on a (large) sphere

and the related fact that the eigenvalues of the curvature of the (twisted) local system

that enters the construction are defined only up to some shifts. The occurrence of these

shifts in the curvature of the connection is explained by the fact that the logarithm of

the eigenvalues of the holonomy of the connection around the loop is determined only

modulo 2πi and that the two charts of the hologram are glued together summing over field

configurations that keep the holonomy of the connection around the loop fixed. These

shifts are important both in two and four dimensions. In two dimensions they lead to the

confining strong coupling phase transition [39 – 41]. In four dimension presumably they

lead to confinement as well. The occurrence of the shifts may be a hint of the existence of

a stringy representation of the partition function in the d = 4 case at least for large loops,

following the analogy with the d = 2 theory in the strong coupling phase [40, 41], where

on the string side they can be related to the winding of the string around the loop [40, 41].

Since we compute the effective action for a Wilson loop in the adjoint representation, we

are looking effectively to a SU(N)/ZN theory. Therefore the partition function contains a

sum with equal weights over sectors of ZN flux. This implies that our quantum holographic

effective action, Γq, contains also a sum over these sectors as well.

In section 3 we compute exactly the local part of the holographic effective action (in

the language of AdS holography this is the near horizon limit [42]), up to finite terms and

up to a conformal anomaly. An essential feature of the orientifold case for the adjoint rep-

resentation is that our computation almost factorizes into the product of two contributions

associated to two different holograms. One hologram is the orientifold obtained merging

the regions close to the point at infinity. We call it the hologram at infinity. The other one

is obtained merging the regions close to zero, the antipodal point on a sphere. We call it

the hologram at zero.

In section 3 we compute the beta function of the Wilsonean coupling constant, finding

that it is exactly one loop in the given scheme and that agrees with the one-loop pertur-

bative result. We compute also the exact beta function for the canonical coupling, finding

exact agreement with the one and two loop perturbative result, that is known to be scheme

independent.

The exact canonical beta function, as opposed to the two loop perturbative one, has, in

addition to the usual perturbative ultraviolet fixed point, an infrared fixed point. Indeed

the infrared fixed point occurs at the value of the coupling for which the numerator in

eq. (1.1) has a zero, as a consequence of the cancellation between terms of different orders

in g with opposite signs. The value of the running coupling for which the infrared zero

– 6 –
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of the beta function occurs is scheme dependent, due to the scheme dependence of higher

order coefficients of ∂logZ
∂logΛ .

In section 4 we recall our conclusions.

2. Holography as a tool to perform large-N functional integrals: the quan-

tum holographic effective action

Our starting point is the pure SU(N) YM theory defined over the four manifold R4. Our

observable is a Wilson loop in the adjoint representation in Euclidean space-time. We will

eventually perform the analytic continuation of the Euclidean Wilson loop to Minkowskian

space-time and also to ultra-hyperbolic signature. In this case we obtain a Wilson loop

on the light cone in Minkowskian signature or on a diagonally embedded light cone in

ultra-hyperbolic signature.

The partition function reads:

Z =

∫

exp

(

− 1

4g2

∑

α6=β

∫

Tradj(F
2
αβ)d4x

)

DA (2.1)

where the generators of the Lie algebra in the adjoint representation are normalised as:

Tr(T aT b)adj = Nδab
∑

a

(T a)2adj = N1adj (2.2)

When the distinction between the Wilsonean and the canonical coupling constant is unim-

portant we will refer to the coupling constant generically as to g, while we will add to g

the underscript W or c to refer to the Wilsonean or to the canonical coupling respectively.

In the large-N limit the v.e.v of a Wilson loop in the adjoint representation factorizes

into the product of the v.e.v. in the fundamental representation and its complex conju-

gate. Each factor can then be computed independently. This is an example of an orbifold

correspondence [25] in the large-N limit, between certain observables of the parent theory,

i.e. Wilson loops in the adjoint representation in the large-N SU(N) theory, and certain

observables of the daughter theory, i.e. the product of Wilson loops in the fundamental

and conjugate representation in the large-N SU(N) × SU(N) theory.

In this paper we will make large use of this orbifold correspondence and also of another

version of it, that is known as the orientifold correspondence [25, 26], which will be explained

later.

The partition function of our orbifold SU(N) × SU(N) daughter theory has, by con-

struction, the factorized form:

Z =

∫

exp

(

− N

2g2

∑

α6=β

∫

Trf (F 2
αβ)d4x

)

DA

∫

exp

(

− N

2g2

∑

α6=β

∫

Trf̄ (F̄ 2
αβ)d4x

)

DĀ, (2.3)

– 7 –
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where the generators in the fundamental representation and its conjugate are normalised

as:

Trf (T aT b) =
1

2
δab

∑

a

(T a)2f =
N2 − 1

2N
1f (2.4)

For notational convenience and brevity, we perform our analysis of the loop equation for

just one factor, for example the one corresponding to the fundamental representation. This

suffices to write down the holographic form of the loop equation on the original space-time

and to show the vanishing of the quantum contribution in the loop equation on each chart

of the corresponding hologram at local level. However, at global level, in the orientifold

construction, we are required to put together both the fundamental and anti-fundamental

factors of the adjoint representation.

The large-N limit of the pure YM can be reduced to a planar problem by a partial EK

reduction, in which two, among the four space-time dimensions, are reduced to a point.

Thus our large-N theory, in its continuum version, is a non-commutative theory on R2×R2
θ

in the limit of infinite non-commutativity. This is the twisted theory.

The degrees of freedom corresponding to the non-commutative R2
θ are absorbed into

the colour Hilbert space. This is the twisted reduced theory, that is two dimensional,

but with fields living into an infinite dimensional colour space. This means, for example,

that the derivatives in the non-commutative directions are interpreted as creation and

annihilation operators in an infinite dimensional matrix representation in colour space.

It is well known, directly from the loop equation or by functional integral methods [43],

that the classical action of the theory thus reduced must be rescaled by a factor of N−1
2 , to

compensate the reduction of the entropy in the functional integration. N2 represents the

number of semi-classical quantum states in the directions transverse to the loop. In the

ordinary theory on commutative space-time N2 = 1
(2π)2

∫

d2xd2p. In the non-commutative

case N2 satisfies 2π
N2Hã2 = 1, where H is the inverse of the non-commutative parameter, θ,

and ã the lattice cutoff. Let us notice that when H is normalised as H = 2π
V2

, with V2 the

area of the transverse space-time, N2 = V2
ã2 as in the commutative case.

The reduction process could be continued until the four dimensional theory is reduced

to a 0-dimensional matrix model, but, for our purposes, we require only a partial EK

reduction to two dimensions.

We now give a heuristic description of how the holographic map works for the reduced

theory. We are given a two dimensional gauge theory with a residual two dimensional

gauge symmetry. In a lattice version this theory is a reduced twisted EK model, in which

the local gauge degrees of freedom live on the links of a planar lattice.

From the point of view of the large-N functional integration each link carries order of

N2 integration variables and thus the functional integral cannot be performed by the saddle

point method, because the entropy is of the same order of N2. Let us suppose that, in

some way, we can pass from the links of the planar lattice to the points of the dual lattice.

In the language of the continuum theory we pass from the connection to the curvature as

– 8 –
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fundamental integration variable. In the d = 2 theory, this is simply the curvature of the

connection that enters the functional integral. In the d = 4 theory, this is actually the

ASD part of the curvature in a version of the twisted reduced EK model.

The corresponding observable is a Wilson loop with a non-hermitean holonomy, whose

curvature coincides with a non-hermitean combination of the ASD part of the curvature

in the Euclidean signature. However, the analytic continuation to ultra-hyperbolic signa-

ture can be performed in such a way that the curvature becomes hermitean. The ultra-

hyperbolic signature is obtained by analytic continuation from Euclidean to Minkowskian

space-time taking into account that the gauge invariant regularization of the loop equation

that we will employ requires analytic continuation from Euclidean to Minkowskian space-

time and, as result, the planar Wilson loop analytically continued lives on a light cone,

diagonally embedded in R2 × R2
θ.

The change of variable from the connection to the ASD part of the curvature defines

the classical holographic effective action, Γ, that is obtained by adding to the classical

action the logarithm of the Jacobian of the change of variable from the connection to the

ASD curvature, plus the logarithm of another Jacobian, due to the choice of a holomorphic

gauge chosen in order to get the Cauchy kernel in the loop equation.

In d = 4, the ASD part of the curvature suffices to resolve the identity in the func-

tional integral, since the classical action is written as the sum of the ASD part and of a

topological term involving the (parabolic) second Chern class, that is kept fixed by quan-

tum fluctuations, and that, for the stable parabolic Higgs bundles introduced momentarily,

vanishes identically [36].

Yet, at each point of the dual lattice, we have still order of N2 integration variables.

Hence the name classical holographic action for Γ, since Γ defines the classical action still

to be integrated in the functional integral over the ASD curvature.

Now we compactify the d = 2 space time of the reduced theory to a sphere, requiring

that all the fields approach a definite limit at infinity. Our dual lattice defines a divisor

on the sphere, on which the curvature of our twisted infinite dimensional parabolic Higgs

bundle is localised. The twist refers here to a constant central term occurring in the

ASD part of the curvature, in addition to the delta-like singularities, and is due to the

non-commutative nature of the twisted EK reduction in the continuum limit.

By the uniformization theory, the sphere with punctures is conformally equivalent to a

cuspidal fundamental domain in the upper half plane, whose parabolic points are the cusps.

This domain of the upper half plane would be, at first sight, the candidate hologram of

the original theory. Indeed, on the upper half plane, that is the universal cover, we can fix

an axial gauge that leaves a residual gauge symmetry along the boundary, that is the line

where the cusps sit. Could we extend the gauge symmetry to the cusps, using the residual

symmetry, we could impose an extra gauge fixing condition in order to reduce the number

of integration variables. However, this does not work for the following reason. There is

a subtle point, that really depends as to whether the Dirac string, created extending the

gauge symmetry across the cusps, is compatible with the geometry of the cusps. If the arcs

ending into the cusps have the same orientation, they can be glued to form tubes going to

infinity. These are the cusps that coincide with the usual parabolic points. But then the

– 9 –
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existence of the Dirac string is incompatible with gluing, a situation that we could have

anticipated, since we started with parabolic points. Indeed moduli of parabolic bundles

are usually defined requiring that the gauge group acts trivially on the curvature at those

points [24].

However, if the cusps were the ending points of arcs with opposite orientation, these

arcs could not be identified and thus their geometry would be compatible with the existence

of a Dirac string. Hence, we need a situation in which the arcs ending into the cusps have

opposite orientation. This can be obtained if strips are added to the marked points of the

loop in the loop equation. The opposite orientation of the strip sides is then implied by

the loop orientation. But then our hologram has necessarily two charts with the loop in

common. In this case, the gauge symmetry can be extended to the cusps, and the curvature

can be diagonalized in the hermitean case or triangularized in general (we will see that, in

the loop equation, also a triangular curvature suffices to construct the quantum effective

action; yet, the analytic continuation to Minkowskian space-time, that is implicit in the

regularization procedure, implies a hermitean curvature).

In the large-N limit this defines a classical theory. Thus the quantum term in the loop

equation has to vanish. This is the consequence of the zig-zag symmetry along the cusp

arcs, that is the same as to say that the arcs have opposite orientations.

Having mentioned the basic ideas, we can now construct in detail our version of the

loop equation, and the corresponding quantum holographic effective action. Here are the

appropriate formulae.

It has been observed sporadically in the literature that the YM functional integral can

be written in the second form

Z =

∫

exp

(

− N

2g2

∑

α6=β

∫

Trf (F 2
αβ)d4x

)

DA

=

∫

exp

(

− N8π2

g2
Q − N

4g2

∑

α6=β

∫

Trf (F−2
αβ )d4x

)

DA (2.5)

as opposed to the first one. Q is the second Chern class, given by:

Q =
1

16π2

∑

α6=β

∫

Trf (FαβF̃αβ)d4x (2.6)

with:

F−
αβ = Fαβ − F̃αβ

F̃αβ =
1

2
ǫαβγδFαβ (2.7)

The last form of the functional integral, though perfectly equivalent to the usual one, is

particularly well suited for the approach to the large-N loop equation developed in [11]

and here.

Indeed, a basic idea in [11] is to consider the loop equation associated to a connection,

B, whose curvature is of ASD type. This connection is singled out by the natural choice
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of the resolution of identity into the levels µ−
αβ of the ASD part of the curvature of the

gauge connection Aα:

1 =

∫

δ(F−
αβ − µ−

αβ)Dµ−
αβ (2.8)

The partition function thus becomes:

Z =

∫

exp

(

− N8π2

g2
Q − N

4g2

∑

α6=β

∫

Tr(µ−2
αβ)d4x

)

δ(F−
αβ − µ−

αβ)Dµ−
αβDA (2.9)

We can write the partition function in the new form:

Z =

∫

exp

(

−N8π2

g2
Q− N

4g2

∑

α6=β

∫

Tr(µ−2
αβ)d4x

)

Det′−
1
2 (−∆Aδαβ +DαDβ +iadµ−

αβ
)Dµ−

αβ

(2.10)

where the integral over the gauge connection of the delta function has been now explicitly

performed:

∫

DAαδ(F−
αβ − µ−

αβ) = |Det′−1(P−dA∧)| = Det′−
1
2 ((P−dA∧)∗(P−dA∧)) (2.11)

= Det′−
1
2 (−∆Aδαβ + DαDβ + iad

F−

αβ
)

where P− is the projector onto the anti-selfdual part of the curvature and, by an abuse

of notation, the connection A in the determinants denotes the solution of the equation

F−
αβ − µ−

αβ = 0. The ′ superscript requires projecting away from the determinants the zero

modes due to gauge invariance, since gauge fixing is not yet implied, though it may be

understood if we like to.

We refer to the determinant in eq. (2.11) as to the localisation determinant because it

arises localising the gauge connection on a given level of the ASD curvature. Let us notice

the unusual spin term iadF−

αβ
in eq. (2.11).

The non-hermitean connection, B, that will enter our loop equation, is somehow

adapted to the resolution of identity:

B = A + D = (Az + Du)dz + (Az̄ + Dū)dz̄ (2.12)

A is the projection of the four dimensional hermitean connection onto the (z = x0+ix1, z̄ =

x0 − ix1) plane of the planar loop and D is the projection of the four dimensional anti-

hermitean non-commutative covariant derivative onto the orthogonal (u = x2 + ix3, ū =

x2 − ix3) plane.

In this paper we choose the following notation as far as the complex basis of differentials

dz = dx0 + idx1 and derivatives ∂ = ∂
∂z

= 1
2( ∂

∂x0
− i ∂

∂x1
) is concerned. Thus, for example,

Az = 1
2(A0 − iA1). In particular the ASD constraint is interpreted as an equation for the

curvature of the non-Hermitean connection B = A + D = (Az + Du)dz + (Az̄ + Dū)dz̄ and

a harmonic condition for the Higgs field Ψ = −iD = −i(Dudz + Dūdz̄).
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In order to derive our loop equation for B, the resolution of identity must be rewritten

into one of the following formally equivalent forms:

1 =

∫

δ(FB − µ)δ(F̄B − µ̄)δ(d∗AΨ − ν)DµDµ̄Dν (2.13)

or

1 =

∫

δ(FB − µ)δ(∂̄Aψ − n)δ(∂Aψ̄ − n̄)DµDnDn̄ (2.14)

In the first case, Dν is a measure over Hermitean matrices, ν = n + n̄, while DµDµ̄ is a

positive measure over complex matrices. In the second case DnDn̄ is a positive measure

over complex matrices while Dµ is a complex measure defined as an integral over the path

µ = µ0 + n− n̄ with µ0 hermitean matrices and n− n̄ kept fixed while integrating over µ0.

The last ingredient, that we need to write down the holographic loop equation, is the

observation that a change of variable exists for the connection B, in which the curvature

of B is given by the field µ′, obtained from the equation:

FB − µ = 0 (2.15)

by means of a complexified gauge transformation G(x;B) that puts B = b + b̄ in the

holomorphic gauge b̄ = 0:

∂̄bz = −i
µ′

2
(2.16)

where µ′ = GµG−1. The mismatch of a factor of 1
2 between eq. (2.15) and eq. (2.16) occurs

because eq. (2.15) is written in the real basis dx0 ∧ dx1 while eq. (2.16) is written for the

complex components.

Employing eq. (2.14) as a resolution of identity in the functional integral, the partition

function becomes:

Z =

∫

δ(FB − µ)δ(∂̄Aψ − n)δ(∂Aψ̄ − n̄) exp

(

− N

2g2
SYM

)

Dµ

Dµ′
DbDb̄Dµ′DnDn̄ . (2.17)

The integral over b, b̄ is the same as the integral over the four Aα. The resulting functional

determinants, together with the Jacobian of the change of variables to the holomorphic

gauge, are absorbed into the definition of Γ.

Γ plays here the role of a classical action, since we must integrate still over the fields

µ′, n, n̄. We may call Γ the classical holographic action, as opposed to the quantum holo-

graphic effective action, Γq. Γ for the twisted reduced theory is given by:

Γ =
N8π2

N2g2
Q +

N

g2

2π

N2H

∫

Trf (F−2
01 + F−2

02 + F−2
03 )d2x

+logDet′−
1
2 (−∆Aδαβ + DαDβ + iad

µ−

αβ
) − log

Dµ

Dµ′
(2.18)

with:

µ0 = F−
01

n + n̄ = F−
02

i(n − n̄) = F−
03 (2.19)
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The resolution of identity in eq. (2.13) is based on a positive measure, while the one in

eq. (2.14) is based on a complex measure, that indeed resembles the integration measure

in complex matrix models [44], employed in the study of the chiral ring of N = 1 SUSY

gauge theories [20, 21].

The two resolutions of identity are formally equivalent. Yet the one in eq. (2.14) leads

in natural way to the correct result for the beta function. Let us explain why.

The two choices lead to different powers of the Vandermonde determinants in the

quantum holographic effective action and also to different ways of counting the dimension

of the moduli space of adjoint orbits and of zero modes. This is due to a different pairing

between the holomorphic and the anti-holomorphic contributions in the integration measure

over the moduli of Higgs bundles. In turn this affects the powers of g that arise by rescaling

the eigenvalues in the Vandermonde determinant and finally it affects the coefficients of

logg in the renormalization of the canonical coupling constant.

Though these differences can be compensated by the different constraints that arise

requiring the vanishing of the parabolic second Chern class, that in turn affect the normal-

isation of the classical action, only in the holomorphic case, as opposed to the hermitean

one, we have been in fact able to show that there exist some Higgs bundles for which the

parabolic constraints and the counting of zero modes are in fact satisfied in order to lead

to the correct beta function.

By the way, the holomorphic resolution of identity leads to the same powers of the

Vandermonde determinant that occur in the d = 2 case. For completeness we write also

the formula for Γ in the d = 2 theory:

Γ =
N

g2

∫

Trf (F 2
01)d

2x + logDet′−
1
2 (−∆Aδαβ + DαDβ + iadµαβ

) − log
Dµ

Dµ′
(2.20)

with:

µ = F01 = µ01 (2.21)

From now on, as far as the loop equation is concerned, we consider only the d = 4 case,

since the d = 2 case follows by analogy. The partition function of the d = 4 theory is now:

Z =

∫

exp(−Γ)Dµ′DnDn̄ (2.22)

In the loop equation it is convenient to consider the Wilson loop as a functional of the

connection b, corresponding to gauge transforming B into the gauge b̄ = 0. Such a gauge

transformation belongs to the complexification of the gauge group and it is rather a change

of variable than a proper gauge transformation. However, because of the property of the

trace, for closed loops, it preserves the trace of the holonomy. This allows us to transform

the loop equation thus obtained into an equation for the holonomy of B.

In our derivation of the loop equation, a crucial role is played by the condition that the

expectation value of an open loop vanishes. In [45] two slightly different ways of achieving

the vanishing of the expectation value of open b loops were presented. We may thus derive
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our loop equation:

0 =

∫

Dµ′Tr
δ

δµ′(w)
(exp(−Γ)Ψ(x, x; b))

=

∫

Dµ′ exp(−Γ)

(

Tr

(

δΓ

δµ′(w)
Ψ(x, x; b)

)

−
∫

C(x,x)
dyz

1

2
∂̄−1(w − y)Tr(λaΨ(x, y; b)λaΨ(y, x; b))

)

=

∫

Dµ′ exp(−Γ)

(

Tr

(

δΓ

δµ′(w)
Ψ(x, x; b)

)

(2.23)

−
∫

C(x,x)
dyz

1

2
∂̄−1(w − y)(Tr(Ψ(x, y; b))Tr(Ψ(y, x; b))− 1

N
Tr(Ψ(x, y; b)Ψ(y, x; b)))

)

that in the large-N limit reduces to:

0 =

∫

Dµ′ exp(−Γ)

(

Tr

(

δΓ

δµ′(w)
Ψ(x, x; b)

)

−
∫

C(x,x)
dyz

1

2
∂̄−1(w − y)Tr(Ψ(x, y; b))Tr(Ψ(y, x; b))

)

(2.24)

where in our notation we have omitted the integrations DnDn̄ since they are irrelevant

in the loop equation. This occurs because the curvature of B depends only on µ. Gauge

invariant functionals of µ are therefore our analogue of the chiral ring of N = 1 SUSY

gauge theories.

Because the trace of an open loop vanishes, the only non-trivial case in eq. (2.24) is

when w lies on the loop C. In this case the loop equation can be transformed easily into

an equation for B since the trace is over the holonomy of a closed loop.

It is clear that the contour integration in the quantum term of the loop equation

includes the pole of the Cauchy kernel. We need therefore a gauge invariant regularization.

The natural choice consists in analytically continuing the loop equation from Euclidean to

Minkowskian space-time. Thus z → i(x+ + iǫ). This regularization has the great virtue

of being manifestly gauge invariant. In addition this regularization is not loop dependent.

The result of the iǫ regularization of the Cauchy kernel is the sum of two distributions, the

principal part plus a one dimensional delta function:

1

2
∂̄−1(wx − yx + iǫ) = (2π)−1(P (wx − yx)−1 − iπδ(wx − yx)) (2.25)

The loop equation thus regularized looks like:

0 =

∫

Dµ′ exp(−Γ)

(

Tr

(

δΓ

δµ′(w)
Ψ(x, x; b)

)

(2.26)

−
∫

C(x,x)
dyx(2π)−1(P (wx − yx)−1 − iπδ(wx − yx))Tr(Ψ(x, y; b))Tr(Ψ(y, x; b))

)
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Being supported on open loops, the principal part does not contribute and the loop equation

reduces to:

0 =

∫

Dµ′ exp(−Γ)

(

Tr

(

δΓ

δµ′(w)
Ψ(x, x; b)

)

+

∫

C(x,x)
dyx

i

2
δ(wx − yx)Tr(Ψ(x, y; b))Tr(Ψ(y, x; b))

)

(2.27)

Taking w = x and using the transformation properties of the holonomy of b and of µ(x)′,

the preceding equation can be rewritten in terms of the connection, B, and the curvature,

µ:

0 =

∫

Dµ′ exp(−Γ)

(

Tr

(

δΓ

δµ(x)
Ψ(x, x;B)

)

+

∫

C(x,x)
dyx

i

2
δ(xx − yx)Tr(Ψ(x, y;B))Tr(Ψ(y, x;B))

)

(2.28)

where we have used the condition that the trace of open loops vanishes to substitute the b

holonomy with the B holonomy.

We are now ready to construct the quantum holographic effective action Γq. On a

dense set in the functional integral (in the sense of distributions), the equations:

FA − iΨ2 =
∑

p

µ0
pδ

(2)(x − xp) − H1

∂̄Aψ =
∑

p

npδ
(2)(x − xp)

∂Aψ̄ =
∑

p

n̄pδ
(2)(x − xp) (2.29)

define an infinite dimensional twisted local system or, what is the same, a twisted parabolic

Higgs bundle on a sphere. Since the Higgs field acts on the infinite dimensional Hilbert

space of a non-commutative R2, the curvature equation involves a central term, H, equal

to the inverse of the parameter of non-commutativity, θ. This occurs because, once the

gauge connection is required to vanish at infinity up to gauge equivalence, the only term

that survives in the curvature at infinity is the commutator of the derivatives on the non-

commutative R2, that is H1. H1 vanishes in the large-N limit. However, the integral

over the two dimensional sphere of its trace, i.e. the first Chern class, need not to vanish

in the large-N limit, as we will see momentarily. The central extension H1 is referred to

in this paper as the twist of the local system. In the case n = n̄ = 0, that will be the

most relevant for us, we may interpret the preceding equations as vortex equations. The

central extension H1 is related to the non-vanishing of the Higgs field Ψ at infinity, while

the zeroes of the Higgs field are localised at the points at which the hermitean part of the

curvature has delta-like singularities.
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There is a corresponding form of the holographic loop equation in terms of the lattice

field of the curvature of the twisted parabolic Higgs bundles:

0 =

∫

∏

q

Dµ′
q exp(−Γ)

(

Tr

(

δΓ

δµp
Ψ(xp, xp;B)

)

−
∫

C(xp,xp)
dyz

1

2
∂̄−1(xp − y)Tr(Ψ(xp, y;B))Tr(Ψ(y, xp;B))

)

(2.30)

Because of the occurrence of a central extension in the curvature of the non-commutative

theory, we need to modify slightly our formulae for the classical action and for the Chern

classes. In addition we must take into account the parabolic structure, in such a way to

define the parabolic first and second Chern classes [36].

Fibrations of parabolic Higgs bundles have been introduced in the YM functional

integral in [46] and more recently in [24] in N = 4SUSY gauge theories. For twisted

parabolic Higgs bundles the functional integral is given by:

Z =

∫

exp

(

− N

2g2

∑

α6=β

∫

Trf (F 2
αβ) − Trf (Fαβ)2d4x

)

DA

=

∫

exp

(

− N8π2

g2
PC2 −

N

4g2

∑

α6=β

∫

Trf (F−2
αβ ) − Trf (F−

αβ)2d4x

)

DA (2.31)

PC2 is the parabolic second Chern class, given by:

PC2 =
1

16π2

∑

α6=β

∫

Trf (FαβF̃αβ) − Trf (Fαβ)Trf (F̃αβ)d4x

= C2 +
∑

p

(

Tr(λpeDp) − Tr(λp)Tr(eDp) +
1

2

(

Tr(λ2
p) − Tr(λp)

2
)

D2
p

)

(2.32)

where C2 is the ordinary second Chern class, λp the parabolic weight at p, D2
p the self

intersection number at p, eDp the electric flux divided by 2π through the dimension two

divisor Dp (in fact these fluxes are referred to as magnetic in [24], but here we call them

electric, since they are dual to the fluxes through the plane of the Wilson loop that we have

referred to as magnetic). The parabolic weight is the eigenvalue of the hermitean part of

the curvature in the Hitchin equation, divided by 2π and modulo 1. PC1 is the parabolic

first Chern class, given by:

PC1 =
1

4π

∑

α6=β

∫

Trf (Fαβ)ω̃αβd4x

= C1 +
∑

p

Tr(λp)Deg(Dp) (2.33)

where C1 is the ordinary first Chern class and Deg(Dp) the degree of the dimension two

divisor Dp. For a detailed explanation see [36] and in physical language [24].

In the loop equation there is no contribution from the variation of PC2, since it is a

topological invariant and in particular it vanishes, together with PC1, for stable parabolic
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Higgs bundles [36]. These vanishing constraints must be implemented by delta functions

in the functional integral of the reduced twisted parabolic theory. Of course PC2 and

PC1 contain some four dimensional information on the fibration of the parabolic Higgs

bundles, i.e. a choice of ordinary Chern classes, electric fluxes, self-intersection numbers

and degrees. These choices introduce a discrete ambiguity and can be justified a posteriori

by the computation of the beta function.

However, these choices may have a natural interpretation from the point of view of the

EK reduction from four to two dimensions. In particular, to get the correct first coefficient

of the beta function, we need a certain matching between the value of the classical action

in the PC2 = PC1 = 0 sector and the number of zero modes that occur in the localisation

determinant. This matching is different, but somehow analogue, to the matching that

occurs for instantons in one-loop perturbation theory. In the latter case the classical action

is N(4π)2|Q|
2g2 , while the number of zero modes of the operator in the localisation determinant

is 4N |Q| (see, for example, [47]). In the instanton case, because of the ASD equation

F−
αβ = 0, the localisation determinant and the usual one-loop contribution coincide.

In the present case, it turns out that the locus in the moduli space of the twisted

parabolic Higgs bundles, for which the first coefficient of the beta function is reproduced,

corresponds to a system of irreducible twisted Hodge bundles, that in physical terms are

vortex equations with (minus) first Chern class equal to k. For such a system the action

is N(4π)2|k|
2g2 , while it follows by an index theorem that the number of (real) zero modes for

fixed parabolic weights is 2N |k|. Let us notice that for |Q| = |k| the classical action for

instantons and vortices has the same value, but the number of zero modes for vortices is

one half of the number of zero modes for instantons. Nevertheless we will see in the next

section that the one-loop beta function is the same, because the spin contribution to the

beta function in the instanton case is zero while it is not so in the vortex case. Therefore

we want the condition PC2 = 0 to imply the value N(4π)2k

2g2 for the classical action. We will

see at the end of this section how this constraint may be satisfied.

Now, to construct the quantum holographic effective action, we add infinitesimal strips

starting from the loop and ending into the parabolic points of the two regions in which the

sphere is divided by the loop. Then we map conformally each region to a cuspidal fun-

damental domain over which the quantum term vanishes because of the zig-zag symmetry

(the loop backtracks in a neighbourhood of the cusps). The strips occur in pairs, therefore

each chart of the hologram has the same number of cusps and the same must hold for the

parabolic points of the charts in the original space time.

Mathematically the family of arcs on the hologram belongs to the arc complex of a

Riemann surface [38]. In fact, the pairing of the arcs that intersect the loop, in our approach

to the loop equation, matches exactly the way weighted arc families are composed on a

Riemann surfaces [38].

In the loop equation there is no logarithmic cuspidal anomaly, because, when the arcs

ending into a cusps are parallel, the cuspidal anomaly becomes linearly divergent, rather

than logarithmically divergent, and thus it mixes with the usual linearly divergent contri-

bution proportional to the perimeter, due to short distance Coulomb-like behaviour [48].

Since we can choose arbitrarily a parabolic point on the loop, the loop has a cuspidal
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image in the point at infinity. We should recall the reader that there exist two different

mathematical versions of the uniformization theory [38]: the one in the hyperbolic setting

and the one in the conformal setting. Of course they are equivalent topologically, but not

metrically.

The hyperbolic setting is reminiscent of the AdS correspondence [42], but the version

that works at the level of loop equation for our approach is the conformal setting, since we

want that the scaling factor of the metric be induced by a conformal diffeomorphism.

Quadratic differentials [49] can be used to construct the uniformization map to the

cuspidal fundamental domain. The basic relation between quadratic differentials, q, and

the uniformization map t is:

∂t

∂z
=

√
q (2.34)

We need therefore the standard form of a quadratic differential near a cusp:

∂t

∂z
=

L

2πiz
(2.35)

where L is the length of the horocycle arc around the cusp. Since this expression is infinite

at the cusps it must be regularized and suitably interpreted. In particular it depends

crucially on what the cutoff is on the fundamental domain near the cusps. We must

distinguish the d = 2 from the d = 4 case.

In the d = 2 case, the theory is invariant under area preserving diffeomorphism, and

thus it is not restrictive to consider a circular loop of area equal to the area of the region

inside the loop. In this case we have essentially a circle that is mapped to the circle at

infinity. This is a cylinder, i.e. a punctured disk, that is mapped by the uniformization

map to a strip in the upper-half plane. In this case the uniformization map is:

t =
L

2πi
log(z) (2.36)

Thus we get:

| ∂t

∂z
|(p)2 =

R2

a2
=

A

πa2
= ND (2.37)

where R is the radius and A the area of the disk, while a is the radius of a little disk around

the puncture. Thus ND is the number of lattice points inside the disk.

In the d = 4 case, the theory is not invariant under area preserving diffeomorphism,

however, as far as we are interested in the local approximation for the quantum effective

action, the only thing that matters is how to interpret the quadratic differentials near the

cusps, and it is natural to maintain the d = 2 interpretation. More intrinsically, in the

computation of the quark-antiquark potential (that we do not perform here), we would be

interested in a very long rectangular Wilson loop. The two long parallel sides of the loop

would then be, on a (large) sphere, two circles of very small curvature, in such a way that

the two dimensional interpretation holds literally. At global level, in the conformal setting,

the most suggestive representation of the hologram is as a Mandelstam graph, in which the

infinitesimal strips are strings ending into the cusps (see, for example, [38, 50]).
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Finally the holographic loop equation on the hologram reads:

0 = τ

(

δΓq

δµp
Ψ(xp, xp;B)

)

(2.38)

(τ denotes the combination of the colour trace with the v.e.v.) that is implied by the

critical equation:

δΓq

δµp
= 0 (2.39)

which we refer to as the master equation.

We are now ready to construct the quantum holographic effective action. We denote

by Γ∞
q and Γ0

q the quantum effective actions on the corresponding charts of the hologram.

They are obtained in the following way. It is repeated the construction of Γ in each chart

of the hologram. On the hologram the axial gauge and the gauge µ−
p = 0 at the cusps

are chosen. The superscript − for µp means here lower triangular part, excluding the

diagonal, while the superscript + for µp means here upper triangular part including the

diagonal. In this gauge log| Dµ
Dµ′ | = 0 because the gauge conditions µ−

p = 0 and µ′−
p = 0

can be imposed at the same time, by means of gauge transformations respectively unitary

and in the complexification of the gauge group, and the resulting fields may differ only by

transformations that are upper triangular, thus giving trivial contribution to the Jacobian.

Let us observe also that Det(adµ+
p )|µ−

p =0 reduces to the Vandermonde determinant of the

eigenvalues of µp and as such can be written in any gauge.

Thus, in the d = 2 theory, Γq on each chart of the hologram is the classical action on

the hologram minus the logarithm the Vandermonde determinant of the eigenvalues. Since

the d = 2 theory is not conformal invariant the classical action on the hologram differs by

a conformal factor of the metric from the classical action on space-time, as we will see at

the beginning of section 3 . Finally to get the effective action on the entire hologram we

multiply the contributions from each chart and sum over the discrete set of gauge orbits

that leaves invariant the holonomy on the boundary of each chart.

In fact we should take into account some extra Jacobians that arise by imposing that

the holonomy on each chart has a fixed value and the FP that arises choosing a gauge

in which the holonomy is actually diagonal. It is possible to show, however [51], that the

product of these Jacobians cancels exactly.

In d = 4, on the hologram, Γq is the same as Γ on space-time, up to the conformal

anomaly, because the hologram is a conformal image of the punctured space-time in each

chart. As in d = 2 we impose an axial gauge in a direction orthogonal to the line of cusps.

Using the extended gauge symmetry across the cusps, we set µ in upper triangular form

and we add to Γ minus the logarithm of the corresponding FP determinant, that in this

case too is the Vandermonde determinant. This completes the construction of Γq in each

chart.

More explicitly:

Γq = Γ|Ay=0 −
∑

p

log Det(adµ+
p )|µ−

p =0 + ConformalAnomaly (2.40)
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The first term, Γ|Ay=0 = ( N
2g2 SYM + 1

2 logDet′(−∆Aδαβ + DµDν + iadF−

αβ
))|Ay=0, is the

classical holographic action associated to the reduced non-commutative theory in the axial

gauge on the space-time. For the purpose of computing the beta function, Γ can be

computed in any gauge, provided we add the logarithm of the corresponding Faddeev Popov

determinant. Finally, we sum over a discrete set of gauge orbits, that leaves invariant the

holonomy of B, and also over all sectors of ZN flux, since we are in fact computing a

Wilson loop in the adjoint representation. This completes the construction of Γq on the

entire hologram in d = 4.

The d = 4 theory has some peculiarity, since we are representing an adjoint Wilson

loop as the product of the fundamental one and its conjugate in the large-N limit. The

orbifold and orientifold case correspond to merge in a different way the contributions from

the two charts of the hologram. We can explain the two constructions in terms of two

different resolutions of identity in the functional integral.

In the orbifold case we merge together the chart at zero and the chart at infinity that

have as boundary a Wilson loop in the same representation. We get therefore for the

resolution of identity of the reduced orbifold theory:

1 =
∑

k

∫

δ

(

FB −
∑

p

(µ0pδ
(2)
0p + µ∞pδ

(2)
∞p) + Hk1

)

∏

p

Dµp ×
∫

δ

(

F̄B −
∑

p

(µ̄0pδ
(2)
0p + µ̄∞pδ

(2)
∞p) − Hk1

)

∏

p

Dµ̄p (2.41)

On the orbifold the partition function, for a fixed ZN flux, factorizes into the contributions

of the fundamental and the conjugate representation. The complete partition function is

obtained summing over sectors of equal ZN flux. The gauge group of the theory is, in an

effective way,
SU(N)f×SU(N)f̄

ZN
.

In the orientifold case, instead, we merge the two charts at infinity and the two charts

at zero, that have as boundary a Wilson loop in the fundamental and in the conjugate

representation. The merging is possible since the v.e.v. of the Wilson loop are the same

for both the representations [26] and thus we assume that the eigenvalues in the two

different representation can be identified up to gauge equivalence. In fact, since the v.e.v

of a Wilson loop is real, we expect the eigenvalues to occur in pairs, with opposite sign

in the exponent. The conjugate representation will change just the sings, allowing the

identification by re-ordering. The assumption that we make is equivalent to requiring that

charge conjugation is unbroken in the large-N limit and that acts by gauge transformations

on the eigenvalues of the Wilson loop. We get therefore for the resolution of identity of the

reduced orientifold theory:

1 =
∑

k

∫

δ

(

FB −
∑

p

µ0pδ
(2)
0p + Hk1

)

δ

(

F̄B −
∑

p

µ̄0pδ
(2)
0p − Hk1

)

∏

p

Dµ0pDµ̄0p ×
∫

δ

(

FB −
∑

p

µ∞pδ
(2)
∞p + Hk1

)

× δ

(

F̄B −
∑

p

µ̄∞pδ
(2)
∞p − Hk1

)

∏

p

Dµ∞pDµ̄∞p (2.42)

On the orientifold the partition function, for a fixed ZN flux, factorizes into the contribu-

tions of two non-orientable surfaces that are obtained doubling the chart at zero and the
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chart at infinity by gluing through an orientifold plane over which the Wilson loop lies.

The complete partition function is obtained summing over sectors of equal Hk field.

A subtle point arises about the first Chern class of the parabolic bundles on the two

holograms in the orientifold theory. Cutting and gluing changes the flux, thus to get the

same flux, we perform a dilatation whose effect is taken into account by the conformal

anomaly. The gauge group of our orientifold theory is then, in an effective way, a SU(N)

diagonally embedded into
SU(N)f×SU(N)f̄

ZN
on the (non-orientable) double of space-time.

Interestingly, in the orientifold case, we are somehow separating the infrared from the

ultraviolet, since we are taking different continuum limits on the two holograms, thanks

to the fact that the lattice spacings are different, as we will see shortly. In this respect

it would be interesting to study the action of a duality transformation on the partition

function, although it will not be considered here.

In the resolution of identity in eq. (2.41), (2.42) we have omitted the sum over the shifts

of the parabolic weights, but we will display them in the quantum holographic effective

action. The allowed shifts are the ones that leave invariant the holonomy of the loop and

we leave them undetermined in this paper. However the shift ensemble is non-void, since it

has to contain at least the shifts in the curvature associated to the action of the ZN group

of large gauge transformations.

Finally, we should find out which is the value of the classical action implied by the

stability constraints, PC2 = PC1 = 0, on the hologram in the orientifold case. As we

will see in the next section, we would like to have
∑

p Tr(λ2
∞p + c.c.) − 2k = 0 to get the

correct beta function. This implies a number of choices in eq. (2.32). If we set, as it seems

natural, D2
∞p = 1 for all p, then we need C2 − 1

2C2
1 − ktr(eD∞p) + ktr(ēD∞p) = 0 while

keD∞p − kēD∞p + 1
2

∑

p Tr(λ2
∞p + c.c.) = 0. Thus eD∞p = −1

2 and ēD∞p = 1
2 for all p.

C1 = −k and C̄1 = k by the stability condition PC1 + PC̄1 = 0 on the orientifold, with

the natural choice Deg(D∞p) = 1. Thus the EK reduction in the plane transverse to the

Wilson loop has to be made in presence of an electric flux with eD∞p = −1
2 and ēD∞p =

1
2 , that, on the (non-orientable) double cover, still satisfies the quantisation condition

k(−1
2 ) + (−k)1

2 = integer.

We will see in the next section that these constraints are actually non-void for a vortex

system. Had we employed the hermitean resolution of identity, we would have needed

eD∞p = −ēD∞p = −1, in order to get the correct normalisation of the classical action, and

thus the correct beta function. Yet, we have been unable to show, in this case, that the

associated constraint is non-void for a vortex system.

3. The large-N exact beta function for the Wilsonean and the canonical

coupling

For the reader convenience, as an exercise before considering explicit formulae for the

quantum effective action in d = 4, we write the formulae for the d = 2 case.
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Γq in d = 2, in the fundamental representation, reads:

exp(−Γq)=
∑

k0,k∞

exp

(

− N

g2ã2

∑

i

∑

p

| ∂t

∂z
(p)|20(h+k0)

i2
p +

∑

i>j

∑

p

log(hi
p−hj

p+ki
p0−kj

p0)

)

exp

(

− N

g2a2

∑

i

∑

p

| ∂t

∂z
(p)|2∞(h+k∞)i2p +

∑

i>j

∑

p

log(hi
p−hj

p+ki
p∞−kj

p∞)

)

, (3.1)

where hp is the lattice field of the eigenvalues of the curvature. We have set a = 2π
Λ , with a

the lattice spacing corresponding to the cutoff Λ of the theory, that arises from the product

of delta functions at the same point in the classical action, and analogously for ã.

Since the number of points, ND, is the same in each chart by construction, the only

way to define different areas is to choose different values of the lattice spacing in each chart

, a and ã. The shifts of the eigenvalues of the curvature, k0 and k∞, are chosen in such a

way to leave invariant the Wilson loop. Therefore they satisfy the conditions:
∑

p

kj
p0 = 2π × integer

∑

p

kj
p∞ = 2π × integer (3.2)

It should be noticed that Γq is expressed as a functional of the curvature on the hologram.

This involves a change of the metric in the classical action, since the classical action is not

conformally invariant. Using our interpretation of the regularized quadratic differentials,

we get:

exp(−Γq) =
∑

k0,k∞

exp

(

− NND

g2ã2

∑

i

∑

p

(h + k0)
i2
p +

∑

i>j

∑

p

log(hi
p − hj

p + ki
p0 − kj

p0)

)

exp

(

− NND

g2a2

∑

i

∑

p

(h + k∞)i2p
∑

i>j

∑

p

log(hi
p − hj

p + ki
p∞ − kj

p∞)

)

(3.3)

Assuming translational invariance in each of the two charts of the hologram:

kj
p0 = kj

0 =
2π

ND
× integer

kj
p∞ = kj

∞ =
2π

ND
× integer (3.4)

Thus, the quantum effective action reduces to:

exp(−Γq) =
∏

p

∑

k0,k∞

exp

(

− NND

g2ã2

∑

i

(h + k0)
i2 +

∑

i>j

log(hi − hj + ki
0 − kj

0)

)

× exp

(

− NND

g2a2

∑

i

(h + k∞)i2 +
∑

i>j

log(hi − hj + ki
∞ − kj

∞)

)

(3.5)

where the hi are determined as follows. We can express the effective action in terms of the

eigenvalues of the holonomy, exp(iλi), instead of the eigenvalues of the curvature of the

local system. We have the relations:

(λ + 2π × integer)i = ND(h + k0)
i = ND(h + k∞)i (3.6)

– 22 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
3

obtained requiring that the holonomy at the boundary of each chart is the same and as-

suming translational invariance on each chart. The quantum effective action then satisfies:

exp

(

− Γq

ND

)

=
∑

m0,m∞

exp

(

− N

g2NDã2

∑

i

(λ+2πm0)
i2+

∑

i>j

log(λi−λj+2πmi
0−2πmj

0)

)

exp

(

− N

g2NDa2

∑

i

(λ+2πm∞)i2+
∑

i>j

log(λi−λj+2πmi
∞−2πmj

∞)

)

(3.7)

where now the sum over m0,m∞ is on integers. Γq coincides exactly, up to a factor of

ND, irrelevant in the loop equation, with the quantum effective action for the eigenvalues

of a Wilson loop on a sphere obtained by functional methods [51], provided we identify

A0 = NDa2 and A∞ = NDã2, where A0 and A∞ are the areas of the two charts in which

the sphere is divided by the Wilson loop.

We now pass to the d = 4 case. Following [11], it is convenient to perform the computa-

tion of the divergent parts of Γq in an indirect way, by means of a term by term comparison

with the usual one-loop perturbative contribution to the effective action. For this purpose,

let us recall the structure of one-loop perturbative corrections to the classical action, in

the Feynman gauge:
∫

DcDAα exp

(

− N

2g2

∫

d4xTr(c2)

)

exp

(

− N

2g2
SYM

)

δ(DαδAα − c)∆FP =

= exp

(

− N

2g2
SYM

)

Det−
1
2 (−∆Aδαβ + i2adFαβ

)Det(−∆A) (3.8)

where we have inserted in the functional integral the gauge-fixing condition and the cor-

responding Faddeev-Popov determinant and, by an abuse of notation, we have denoted

with A the classical background field in the right hand side of eq. (3.8). It follows that the

perturbative one-loop effective action, in the Feynman gauge, is given by:

Γone−loop =
N

2g2
SYM +

1

2
log Det(−∆Aδαβ + i2adFαβ

) − log Det(−∆A) (3.9)

The perturbative computation of the one-loop beta function [1, 2] is the result of two

contributions, that are independent within logarithmic accuracy [52].

The orbital contribution gives origin to diamagnetism and to a positive term in the

beta function:

− log(Det−
1
2 (−∆Aδαβ)Det(−∆A))=log Det(−∆A)=

1

3

N

(4π)2
log

(

Λ

µ

)

∑

α6=β

∫

d4xTrf (Fαβ)2

(3.10)

where it should be noticed the cancellation of two of the four polarisations between the

first factor and the Faddev-Popov determinant.

The spin contribution gives origin to paramagnetism and to an overwhelming negative

term in the beta function [52]:

1

4

∑

α6=β

Tr(i2adFαβ
(−∆A)−1i2adFαβ

(−∆A)−1)=−4
N

(4π)2
log

(

Λ

µ

)

∑

α6=β

∫

d4xTrf (Fαβ)2

(3.11)
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Hence the complete result for the divergent part of Γone−loop is:

(

N

2g2
− 11

3

N

(4π)2
log

(

Λ

µ

))

∑

α6=β

∫

d4xTrf (Fαβ)2 (3.12)

In the sector with PC2 = 0, which is the one of stable parabolic Higgs bundles that are of

interest for us, this reduces to:

(

N

2g2
− 11

3

N

(4π)2
log

(

Λ

µ

))

∑

α6=β

∫

d4xTrf

(

2

(

1

2
F−

αβ

)2)

(3.13)

Now, the orbital contribution, from the localisation determinant in Γq, is the same as the

one-loop perturbative one, and thus, in the PC2 = 0 sector, reduces to:

1

3

N

(4π)2
log

(

Λ

µ

)

∑

α6=β

∫

d4xTrf

(

2

(

1

2
F−

αβ

)2)

(3.14)

On the contrary, the spin contribution, from the localisation determinant in Γq, involves

only the anti-selfdual part of the curvature, instead of the complete curvature and, in every

sector, is equal to:

− 4
N

(4π)2
log

(

Λ

µ

)

∑

α6=β

∫

d4xTrf

(

1

2
F−

αβ

)2

(3.15)

Hence, the spin contribution in Γq, from the localisation determinant, is only one half of

the spin contribution in perturbation theory in the PC2 = 0 sector. Thus, the orbital and

spin contributions in Γq, from the localisation determinant, in the PC2 sector, sum up to:

(

N

2g2
W

−
(

2 − 1

3

)

N

(4π)2
log

(

Λ

µ

))

∑

α6=β

∫

d4xTrf

(

2

(

1

2
F−

αβ

)2)

=

(

N

2g2
W

− 5

3

N

(4π)2
log

(

Λ

µ

))

∑

α6=β

∫

d4xTrf

(

2

(

1

2
F−

αβ

)2)

=
N

2g2
W

Z−1
∑

α6=β

∫

d4xTrf

(

2

(

1

2
F−

αβ

)2)

(3.16)

where Z−1 is given by:

Z−1 = 1 − 10

3

1

(4π)2
g2
W log

(

Λ

µ

)

(3.17)

and we have added to g the underscript W to stress that our computation here refers to

the Wilsonean coupling constant. This formula for Z is actually exact to all orders in the

Wilsonean coupling constant, up to finite terms. Therefore the localisation determinant

alone does not reproduce the exact one-loop beta function in Γq.

The only source of new divergences in Γq can be normalizable zero modes, arising in

the integration on the gauge connection of the delta function in eq. (2.11). Until now we
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have tacitly assumed that no normalizable zero mode occurs, but we have just understood

that in order to reproduce the exact one-loop beta function they are in fact necessary.

The dimension of the space of zero modes is equal to the dimension of the moduli space

of those deformations of the parabolic Higgs bundles that leave invariant the functional:
∫

d2xTrf (F−
αβ − µ−

αβ)2 (3.18)

that occurs in the definition of the delta function, as the limit of an exponential of a

quadratic form, provided the corresponding zero modes are normalizable. Thus, formally,

these moduli are associated in general to adjoint orbits. However, for a Higgs bundle, the

deformations associated to adjoint orbits do not lead in general to normalizable the zero

modes, since, in the tangent space to adjoint orbits, delta-like singularities occur, for fixed

λp, np:

FA − iΨ2 =
∑

p

2πgpλpg
−1
p δ(2)(x − xp) − H1

∂̄Aψ =
∑

p

npδ
(2)(x − xp)

∂Aψ̄ =
∑

p

n̄pδ
(2)(x − xp) (3.19)

In eq. (3.19) we have rescaled the eigenvalues of the adjoint orbits by a factor of 2π, in

such a way that they coincide now with the parabolic weights modulo 1.

Eq. (3.19) describes a Kahler quotient by the compact gauge group, in which the

dimension of the moduli space of solutions, for fixed λp, np, is the dimension of the adjoint

orbit. This is the dimension of the space of formal zero modes of the quadratic form in

eq. (3.18). The complex dimension of a SU(N) adjoint orbit is 1
2(N2 −∑

i m
i2), where mi2

are the multiplicities of the eigenvalues of the adjoint orbit. Thus, if all the eigenvalues

are different, the complex dimension is 1
2(N2 − N). However, in general these zero modes

are not normalizable, unless the metric is changed and adapted to the singularities of the

connection determined by the adjoint orbits [37].

(On the hologram) we can gauge transform eq. (3.19) to:

FA − iΨ2 =
∑

p

2πλpδ
(2)(x − xp) − H1

∂̄Aψ =
∑

p

g−1
p npgpδ

(2)(x − xp)

∂Aψ̄ =
∑

p

gpn̄pg
−1
p δ(2)(x − xp) (3.20)

Now, there is a special locus in the moduli space of the Higgs system, for which the Higgs

field is regular and thus normalizable zero modes may exist in the tangent space. This locus

corresponds to set np = n̄p = 0, to get a kind of infinite dimensional vortex equation [53]:

FA − iΨ2 =
∑

p

2πλpδ
(2)(x − xp) − H1

∂̄Aψ = 0

∂Aψ̄ = 0 (3.21)
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In fact this locus is favoured by the master equation in the local approximation, since the

Vandermonde determinant creates repulsion between the eigenvalues of µ, while the other

moduli are suppressed by the classical action.

On the hologram there are not anymore adjoint orbits. However, we can determine the

dimension of the moduli space of normalizable zero modes as well, using an index theorem

that counts the number of holomorphic sections of the holomorphic bundle:

∂̄Aψ = 0 (3.22)

The complex dimension of this space is N |k| [54], where k is minus the first Chern class,

that, for stable parabolic Higgs bundles of parabolic degree zero, is given by:

k =
1

2π

∫

Tr(Hk)d
2x

=
∑

p

Tr(λpmod1) = −C1 (3.23)

Of course the two ways of counting must coincide, and in fact they do, provided singularities

in the moduli of vortex configurations are suitably interpreted. It is easy to see directly in

some special cases how the two ways of counting coincide, provided we take into account

the restrictions of rational type that arise on the eigenvalues, due to the fact that the

singularities of A can only arise from the zeroes of ψ.

For one SU(N) vortex the eigenvalues of the curvature are 2π
N

. . . 2π(1−N)
N

. Therefore

the complex dimension of the orbit is 1
2(N2 − 1 − (N − 1)2) = N and k = 1, since all

the parabolic weights, being the eigenvalues divided by 2π modulo 1, are 1
N

. However,

if the eigenvalues are 2πk
N

. . . 2π(1−N)k
N

the counting of the holomorphic sections and the

dimension of the orbit do not seem to agree. Yet, from the holomorphic point of view, this

configuration describes in fact k vortices colliding at the same point. Vortices of this kind

may occur at strong coupling, where we do not expect a scaling behaviour.

Let us consider now the more complicated situation of a generic adjoint orbit, that we

expect to be relevant in the large-N limit. If we where in finite dimension, because eq. (3.22)

is left invariant under constant rescaling of ψ, it would describe bundles of Hodge type, that

are indeed the fixed points of the rescaling action from the holomorphic point of view [32 –

34]. Thus ψ would be nilpotent [32 – 34]. In eq. (3.20), instead, Hodge bundles arise as

fixed points of the circle action, exp(iα), on ψ, that must act by gauge transformations [55].

Thus, A decomposes as a sum of irreducible representations of dimensions equal to the

multiplicity of the parabolic weights, that therefore turn out to be rational. Yet, ψ may

still stay irreducible, provided all the blocks in A have the same dimension [56], for example

are valued in SU(m). Thus N = mN ′.

In each SU(m) block we put one vortex. Thus k = N ′, the number of SU(m) blocks,

and the complex dimension of zero modes associated to this orbit is NN ′. Of course, to get

the total number of zero modes, we have to sum over the dimensions of all the non-trivial

orbits. It is easy to see that, in the large m limit, the contribution of each vortex of this

type to the classical action is N(2π)2N ′

g2 and therefore the total contribution of vortices in

the fundamental representation is N(2π)2k

g2 .
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We are ready now to continue our computation of the beta function. We may think

that, somehow conserving our difficulties, we have traded the integration over the order

of N2 degrees of freedom in the curvature of the original theory into the integration over

the (eventually) same order of N2 degrees of freedom of the normalizable zero modes on

the hologram. Yet, we know from the loop equation, that in the second case the resulting

theory must be classical, in the sense that on the hologram all the quantum corrections are

already included in the quantum holographic effective action.

This is precisely what happens. Because of the normalizable zero modes, Γq gets the

missing contributions, in order to complete the correct one-loop beta function.

In the orientifold case the hologram consists of two disconnected surfaces, the hologram

at zero and the hologram at infinity. We start computing the contribution of the hologram

at infinity. Because of the constraint PC2 = PC1 = 0, to hold in the large-N limit, and

our choices for the fibration of the Higgs bundles, the classical action on the hologram at

infinity is:

exp

(

− 2Nk(2π)2

g2

)

(3.24)

because we get k vortices in the fundamental representation and k vortices in the conjugate

representation from the doubling of the chart at infinity in the orientifold. The localisation

determinant renormalises the classical action according to eq. (3.16), (3.17):

exp

(

− 2NkZ−1(2π)2

g2

)

(3.25)

The contribution of zero modes is:

Λ2Nk =

(

2π

ã

)2Nk

(3.26)

Indeed k vortices in the fundamental representation contribute Nk holomorphic zero modes,

that are paired with the Nk anti-holomorphic ones from the doubling with the conjugate

representation. This matching between holomorphic and anti-holomorphic zero modes

follows from the holomorphic resolution of identity employed in eq. (2.14) and the pairing

with the corresponding anti-holomorphic contribution in the conjugate representation in

the resolution of identity of the orientifold, eq. (2.42).

This pairing on the orientifold resembles the absence of the twisted sector in the field

theoretical orientifold [5, 6, 26]. Combining eq. (3.25), (3.26), we get for the Wilsonean

coupling constant:

(4π)2Nk

2g2
W (µ)

= (4π)2Nk

(

1

2g2
W (Λ)

− 1

(4π)2

(

2 +
5

3

)

log

(

Λ

µ

))

(3.27)

provided there are no other divergent contributions from the hologram at zero, as we will

show in the following.

From a direct computation we get that the classical action on the hologram at zero

scales as ã2

a2 . This is due to the normalisation condition π
N2Hã2 = 1 on the hologram at
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infinity that implies for the hologram at zero the normalisation π
N2Ha2 = ã2

a2 . Then on the

hologram at infinity we take the continuum limit ã → 0 with A∞ = NDã2 = const and

small, while on the hologram at zero we keep a = const with A0 = NDa2 → ∞.

This means that on the hologram at infinity we take the continuum limit at fixed small

area, while on the hologram at zero we take the termodinamic limit at fixed lattice spacing.

In this way we send the area of the universe to infinity, while keeping the area of the loop

finite and small. There might be other ways of taking the continuum limit, however, we

will not discuss them in this paper. Any possible ultraviolet quantum contribution is finite

in the hologram at zero, since we have kept a fixed. Thus, in the limit ã → 0, a = const,

we conclude that the Wilsonean coupling constant is exactly one loop. However, this will

not be the case for the canonical coupling, as we will see momentarily.

We start with a preamble, recalling how the difference between the Wilsonean and the

canonical beta function can be understood in terms of a rescaling anomaly in the functional

integral, in the N = 1 super-symmetric case, following [57].

The canonical coupling constant can be related to the Wilsonean one taking into

account an anomalous Jacobian that occurs in the functional integral:

Z =

∫

exp

(

− N

2g2
W

SYM(A)

)

DA

=

∫

exp

(

− N

2g2
W

SYM(gcAc)

)

D(gcAc)

DAc
DAc

=

∫

exp

(

− N

2g2
W

SYM(gcAc) + log
D(gcAc)

DAc

)

DAc

=

∫

exp

(

− N

2g2
c

SYM(gcAc)

)

DAc (3.28)

From this relation it follows that:

N

2g2
c

=
N

2g2
W

− S−1
YM(gcAc)log

D(gcAc)

DAc
(3.29)

We now pass to the large-N QCD4 case. Since we have completed the construction of the

quantum effective action, Γq, in terms of the eigenvalues of the curvature of a twisted local

system, the computation of the canonical beta function is by now most easily performed.

We should notice that, since our effective action involves only the N eigenvalues, the

rescaling anomaly that arises from the integration measure for them, whatever it is, is

sub-leading in 1
N

. Thus, if there is at all a rescaling anomaly, it must be already contained

in the functional form of the quantum effective action.

Here are the expressions for the local part of the effective action, up to the conformal

anomaly and finite terms, for the hologram at infinity and at zero respectively:

exp(−Γk,∞
q ) =

∑

e

δ

(

∑

i,p

(λi
p + ei

p) − k

)

δ

(

∑

i,p

(λ̄i
p + ēi

p)+k

)

δ

(

∑

i,p

(λi
p+ei

p)
2+c.c. − 2k

)

∏

p

exp

(

− NZ−1(2π)2

g2
W

(

∑

i

(λi
p+ei

p)
2+c.c.

))

ã−2Nk
∏

i>j

((λi
p − λj

p + ei
p − ej

p) × c.c.) (3.30)

– 28 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
3

and

exp(−Γk,0
q ) =

∑

m

δ

(

∑

i,p

(λi
p + mi

p) − k

)

δ

(

∑

i,p

(λ̄i
p + m̄i

p) + k

)

δ

(

∑

i,p

(λi
p+mi

p)
2+c.c.−2k

)

∏

p

exp

(

−N(2π)2ã2

a2g2
W

(

∑

i

(λi
p+mi

p)
2+c.c.

))

∏

i>j

((λi
p − λj

p + mi
p − mj

p) × c.c.) (3.31)

The complete expression, as a sum over k sectors, is:
∑

k

exp(−Γk,∞
q ) exp(−Γk,0

q ) (3.32)

If we set in canonical form the quadratic part of the action in the two holograms, we get

a different rescaling for different fields.

For the hologram at infinity we get:

(gcZ
1
2 )2Nk (3.33)

The exponent, 2Nk, results from the number of zero modes, that equals the complex

dimension of the adjoint orbit for vortices in the fundamental representation, Nk, plus

the contribution for vortices in the conjugate representation, Nk, that in turn equals the

number of non-vanishing factors, λi
p−λj

p+ei
p−ej

p, in the Vandermonde determinant plus the

number of non-vanishing factors in the complex conjugate Vandermonde. Had we employed

the resolution of identity in eq. (2.13), we would have obtained twice as many factors, but

at the same time twice as many zero modes, because of the different holomorphic anti-

holomorphic pairing.

However, in this case, the normalisation of the classical action would have been differ-

ent, in order to get the correct one- and two-loop beta function.

The canonical rescaling of the action in the hologram at infinity involves, in addition

to the usual rescaling by a factor of g, also the multiplicative renormalization, Z, of the

square of the ASD curvature, as opposed to the SUSY case. For the hologram at zero, by

the same counting, we get instead:

(gc)
2Nk (3.34)

since the multiplicative renormalization, Z, is finite on the hologram at zero and it can be

set equal to one by a wise choice of the subtraction point.

Putting together the two contributions, we get:

1

2g2
W

=
1

2g2
c

+ βJ loggc +
βJ

4
logZ (3.35)

in the continuum limit, defined as ã → 0, a = const. From eq. (3.35) it follows the formula

of NSV Z type [58] for the canonical coupling mentioned in the introduction:

∂gc

∂logΛ
=

−β0g
3
c + βJ

4 g3
c

∂logZ
∂logΛ

1 − βJg2
c

(3.36)

– 29 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
3

We expect the existence of a (scheme dependent) infrared fixed point due to cancellations

of terms of different order in gc in the numerator, since, contrary to perturbation theory,

the order of g5 contribution in the numerator has the sign opposite to the one of order of g3.

4. Conclusions

We have computed exactly, up to finite terms, the local part of the effective action for

the eigenvalues of the curvature of a twisted local system, that solves the holographic

loop equation, for a certain self-avoiding Wilson loop in the adjoint representation, in the

large-N limit of a twisted Eguchi-Kawai reduced version of QCD4.

The construction of the effective action employs a hologram made by two charts, with

the loop on their boundary, containing two lattices of points, on which the curvature of

the twisted local system is localised.

The hologram is a conformal image of the two regions of the plane delimited by the

loop, with attached infinitesimal strips ending into cusps at infinity, that are the conformal

images of the points of the lattice in each chart.

On the hologram the theory becomes classical in the large-N limit, in the sense that

the quantum term vanishes in the loop equation, because of the zig-zag symmetry in a

neighbourhood of the cusps, and hence the holographic loop equation is implied by the

critical equation of the effective action.

We have extracted from it the exact beta function for the Wilsonean and the canonical

coupling. In a certain scheme, the Wilsonean coupling is only one loop, with the correct

perturbative first coefficient of the beta function.

In the same scheme, the canonical coupling has a NSV Z form, with the correct first

two universal perturbative coefficients of the beta function. In addition, the exact canonical

beta function may have a scheme dependent fixed point in the infrared, due to the opposite

signs in the numerator in the fraction of NSV Z type.

We leave for the future the study of the inter-quark potential via the effective action.
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